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ABSTRACT

A systematic study is made of the number and types of solutions of the equilibrium equations of stellar
structure, in the case of homogeneous stars of Population I over the mass range 2-1000 M, with four different
opacity representations. A variant of the usual “fitting” method permits the simultaneous investigation of
convergence and tendency toward multiplicity of the solutions. Quadratic interpolation and extrapolation of
Carson’s new opacity tables produces a very large opacity at low temperatures that greatly affects the loose
outer layers of massive stars, while leaving the cores practically unaffected. As a result, over a small mass
range, well above 100 Mo, triple solutions exist, always near an effective temperature of log T, = 4.73. In such
a situation, a “cool” sequence of low masses overlaps a “hot” sequence of high masses, with a short *“ middle”
sequence of intermediate masses connecting them. Multiplicity is found to be favored by a high helium abun-
dance, a high metals abundance, and fast uniform rotation. Secular stability of the models is discussed. The
close resemblance between the kinds of multiplicity found in homogeneous stars and in composite stars is
pointed out. A simple classification of the known exceptions to the Vogt-Russell theorem on the uniqueness of

stellar structure is given.

Subject headings: instabilities — interiors, stellar — massive stars — opacities — rotation, stellar

I. INTRODUCTION

The Vogt-Russell theorem (Vogt 1926; Russell 1927)
for a spherical star in hydrostatic and thermal equi-
librium can be succinctly stated as follows (Chan-
drasekhar 1939): “If the pressure, P, the opacity, «,
and the rate of generation of energy, e, are functions of
the local values of p, 7, and the chemical composition
only, then the structure of a star is uniquely determined
by the mass and the chemical composition.” Strictly
speaking, the second adiabatic exponent, I';, should be
mentioned in addition to the pressure, in order to make
explicit allowance for the possibility of convective
(adiabatic) layers in the star. The “proof™ of the
theorem is essentially a plausibility argument built
around an inspection of the basic equations and
boundary conditions, and has never been made mathe-
matically rigorous. Indeed, it cannot (see, e.g., Russell
1927, 1931; Odgers 1957; Chiu 1968; Kahler 1972),
and exceptions to both the existence and the unique-
ness of the solution of the basic equations are known.

The principal exception to the existence part of the
theorem is the occurrence of a maximum mass for cold
degenerate (in the sense of fermion degeneracy) steliar
models, as was first recognized by Anderson (1929)
and, more precisely, by Chandrasekhar (1931). Four
exceptions to the statement of uniqueness are known.
First, a hot nondegenerate model burning nuclear fuel
(a “main-sequence’ star) and a cold degenerate model
(a white dwarf) can be constructed over a limited
range of stellar masses, as was first recognized, in basic
principle, by Milne (1930). Second, two (or more)
models for a hot partially degenerate star of low mass
that is burning nuclear fuel are also calculable, as was
first shown by Cox and Salpeter (1964) for helium
stars. These two violations of the Vogt-Russell theo-
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rem, however, are really only one (see, e.g., Paczynski
and Kozlowski 1972). In fact, Milne (1930) and Russell
(1931) had already foreseen the possibility of this type
of exception to the theorem, although Milne was
thinking more in terms of a possible continuum of
models, which apparently does not-exist. The third
exception to the theorem is the existence of two models
for a nondegenerate star composed of an isothermal
core and an envelope of lighter material, separated by a
nuclear-burning shell, as was first shown by Gabriel
and Ledoux (1967) for intermediate-mass stars with
helium cores and hydrogen-rich envelopes. When the
core is degenerate, additional models also exist
(Kozlowski and Paczynski 1973). The fourth exception
is similar to the third (for nondegenerate stars) except
that the core need not be isothermal, as was first
recognized, in essence, by Stothers and Chin (1968)
and, independently, by Paczynski (1970) in the case of
massive stars burning helium in the core. The roles of
the Chandrasekhar (1931) mass limit for degenerate
stars and of the Schénberg-Chandrasekhar (1942) mass
limit for an isothermal core are crucial in under-
standing the divisions between the various exceptions
to the theorem for real stars (see, e.g., Paczynski 1972;
Kozlowski and Paczynski 1973).

In the present paper we shall show that, for a par-
ticular choice of opacity, at least three models for a
homogeneous star of high mass are possible. Electron
degeneracy, however, is unimportant in this case, and
the character of the multiple solutions resembles closely
that found in the fourth exception to the Vogt-Russell
theorem mentioned above. Specifically, the core struc-
tures (and hence the luminosities) of the three models
are virtually identical, and only the envelope structures
differ.
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II. METHOD OF SOLUTION

Models of homogeneous stars of high mass have
been constructed with the same input physics and
assumptions as were used by Stothers and Simon
(1970). However, as a source of opacity, we have used
not only the Cox-Stewart “hydrogenic” opacities, as
represented by the interpolation formula in the cited
paper, but also pure Thomson scattering by free elec-
trons and Carson’s (1974) new “Thomas-Fermi”
opacities, in the form of tables giving log « as a func-
tion of log T and logp. Both linear and quadratic
interpolation in the tables have been employed. Con-
vection, wherever it occurs in the stellar models, has
been treated as being adiabatic.

The manner of construction of the models is im-
portant here because it has led to the accidental dis-
covery of the multiple solutions. The “fitting” method
of solving the basic equations of stellar structure in
nondimensional form, as described elsewhere (Stothers
1963), is adopted, except that the radiative-envelope
parameter C is replaced by C«/[0.19(1 + X)] in order
to allow for a full opacity; and two eigenvalues for the
envelope solutions are now necessary and are here
taken to be log L and log T, while the (single) eigen-
value for the convective-core solution is, as before, the
central ratio of gas pressure to total pressure, B..
Fitting of the envelope and core solutions is accom-
plished at the convective-core boundary with the help
of the usual homology invariants; an accuracy of four
significant figures is required for a satisfactory fit. The
crucial difference in our present approach is that log T,
is first specified (by guessing it) and the value of log L
which gives a fitted solution with respect to the homo-
logy invariants is solved for. This yields a “trial”
model. Integration of the nuclear-energy generation
rate, in nondimensional variables, over the whole con-
vective core provides a relation between R and L,
which, between them, produces a predicted estimate for
log T,. We shall denote the difference between the
logarithms of the two effective temperatures, in the
sense of “predicted” minus “specified,” as & log T..
Then the rate at which &log 7, changes with the
specified value of log T, indicates the rate at which the
solution is converging to a “final” model.

Difficulties in convergence were encountered at
several masses when Carson’s opacities were employed.
This prompted a systematic search of the (log T,
8 log T,)-plane at these masses, with the eventual dis-
covery of both divergent solutions and multiple final
models.

III. CONVERGENT AND DIVERGENT SOLUTIONS

The approach of the trial solutions to a definitive
solution will be described first for the simplest case
where only one final model exists. For simplicity, we
assume that the locus of trial solutions on the (log T,
8 log T,)-plane is nearly a straight line in the vicinity
of the definitive solution. We define D = d8 log T,/
dlog T, at the point 8 log T, = 0. Then the behavior
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Fic. 1.—Domains of convergent and divergent trial solu-
tions in a plot of specified effective temperature against the
“predicted”™ correction to the specified effective temperature.
The horizontal and vertical scales are taken to be equal. The
locus of trial solutions may be thought of as a straight line
running through the center.

of the trial solutions near this point can be charac-
terized as follows:

—00 < D <=2: oscillatory divergence;

—~2 < D <—1: oscillatory convergence;

~1 < D < 0: monotonic convergence;
0 < D < +co: monotonic divergence .

The situation is illustrated in figure 1, where the locus
of trial solutions is supposed to be a straight line
through the center of the figure. Notice that the con-
vergent trial solutions are confined to the narrow
domain: —~2 < D < 0(immediate convergence occurs
if D = —1). This means that, if the specified value of
log T, is too high (too low), the correction to it,
dlog T,, is sufficiently negative (positive) to ensure
convergence by a process of repeated substitutions of
log T,. In practice, except in the neighborhood of
multiple final models, the locus of trial solutions is in
fact found to be very nearly a straight line, so that D
is normally a well-defined quantity.

Our most exhaustive study treats the mass range
2-1000 M, with a (hydrogen, metals) content of
(X, Z) = (0.49, 0.02). Ignoring for the moment the
subrange of masses where multiple final models occur,
we find that D becomes progressively more negative
with increasing stellar mass and also with an increas-
ingly stronger opacity source. This is exemplified by
the following results: (1) for pure Thomson scattering
by free electrons, D = —1 at all masses; (2) for the
Cox-Stewart opacities, D approaches —1 asymptotic-
ally with increasing mass; (3) for the Carson opacities
with linear interpolation in the opacity tables, D attains
—1 at ~500 M, and —2 at ~1000 My; and (4) for
the Carson opacities with quadratic interpolation in the
opacity tables, D attains —1 at ~180 My and —2 at
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Fic. 2.—Curves of trial solutions for various stellar masses (given in solar units) in a plot of specified effective temperature
against the “predicted” correction to the specified effective temperature. Dots indicate definitive solutions. The models have been
constructed with (X, Z) = (0.49, 0.02), no rotation, and quadratic interpolation in Carson’s opacity tables.

~250 Mg. Thus, for sufficiently high masses, the use
of Carson’s opacity tables renders the trial solutions
oscillatory divergent, even though final models do
exist.

IV. MULTIPLE SOLUTIONS

The locus of trial solutions on the (log T, & log T,)-
plane for any model built with the Cox-Stewart
opacities is very nearly linear even at large distances
from the definitive solution. The greater magnitude
and the greater irregularity of the Carson opacities
produce a wavier line on this plane when the stellar
mass is high. But of vastly greater significance is the
development of a distinct “bump” on this line when
quadratic interpolation is employed in Carson’s tables.
For reasons to be discussed in § V, quadratic inter-
polation yields a larger opacity than does linear inter-
polation at low temperatures and densities in Carson’s
tables. Thus the bump on the locus of trial solutions
in the (log T,, 8 log T,)-plane is the consequence of a
very large opacity that occurs in the outer layers of
massive stellar models.

a) Effect of Stellar Mass

A specific example of the development of such a
bump is given in figure 2 for the composition mixture
(X, Z) = (0.49, 0.02). Notice that the bump begins its
development below the axis of definitive solutions. As
the stellar mass increases, the bump expands both
horizontally and vertically. These motions carry it up
to and, eventually, past the axis of definitive solutions.
However, the bump always remains centered at
log T, ~ 4.73.

Any intersection of the curve of trial solutions with
the horizontal axis produces a true solution. At low
mass, only one true solution exists because the curve is
linear. With an increase of mass, a bump on the curve
begins to develop, near ~ 120 M. However, the top of
the bump does not meet the axis of definitive solutions

until a mass of 166 M, is attained. At this point a
second definitive solution suddenly appears. It is a
degenerate solution because a further slight increase of
mass resolves it into two closely spaced components.
These second and third solutions proceed to move
away from each other, one of them approaching the
first solution. Eventually, the two approaching solu-
tions coalesce as the bump on the curve of trial solu-
tions leaves the axis of definitive solutions. This
happens at 195 M,. For higher masses, only one
solution exists, because the bump, although continually
growing, nowhere intersects the horizontal axis.

If the definitive solutions are plotted in a diagram
of mass against effective temperature, a single con-
tinuous curve results (see fig. 3). Although only one
mass exists at any effective temperature, each mass
may have up to three effective temperatures associated
with it. Division of the curve into three segments allows
one easily to visualize a “‘cool” sequence extending
from very low masses up to 195 My, a short “middle”
sequence connecting the “cool” model at 195 M, with
a “‘hot” model at 166 M, and a “hot” sequence ex-
tending from 166 M up to very high masses. The
effective temperature rises with increasing mass except
on the “middle” sequence and except at extremely
high masses on the “hot” sequence. (A tendency
toward a constant effective temperature at very high
masses occurs even when a purely electron-scattering
opacity is adopted [Stothers 1966].)

Since the luminosity at fixed mass is virtually inde-
pendent of the effective temperature, a diagram with
these two quantities plotted would qualitatively re-
semble figure 3. The physical reason for this is that the
cores of the multiple models are nearly identical, only
the envelopes differing. (However, close examination
does show a very slight increase of luminosity and
central radiation pressure due to the reduction of
opacity when the effective temperature is hotter.) The
main properties of the models are listed in table 1 for
several masses.
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Fic. 3.—Diagram of stellar mass against logarithm of effective temperature, for final stellar models constructed with (X, Z) =
(0.49, 0.02), no rotation, and two modes of interpolation in Carson’s opacity tables. The dashed portion of the lower line indicates

the region of multiple models.

b) Effect of Chemical Composition

Stellar models have also been calculated for the two
composition mixtures (X, Z) = (0.73, 0.02) and (0.71,
0.04) in addition to the case just discussed. As before,
a bump on the (log 7., 8 log T,)-plane develops and
grows with increasing mass—again around log 7, &
4.73. But the stellar mass at which the bump begins is
~270 M, and ~ 300 M, for the above two mixtures,
respectively. Evidently the effect of mean molecular
weight (through the hydrogen and helium abundances
primarily) is more important than the effect of opacity
(mostly through the metals abundance) in determining
the mass at which the bump develops. In the case
(X, Z) = (0.73,0.02) the bump is just starting to
develop as its top reaches the axis of definitive solu-
tions. If either X were larger or Z smaller, the bump
would begin to develop above this axis, and bifurcation
of the models would be avoided at all masses in this
case.

Characteristics of the models that lie at the bifurca-
tion points are given in table 2 for three chemical
compositions,

¢) Effect of Uniform Rotation

The basic equations for a uniformly rotating star
may be conveniently reduced to the same form as for
a spherical star by introducing the simple parameter
o = 3Q%3/GM(r), where Q is the angular velocity
about the rotation axis (Faulkner, Roxburgh, and
Strittmatter 1968). The Vogt-Russell theorem ought
therefore to cover the case of a star in uniform rotation
if Q is specified. Or, equivalently, the surface param-
eter A = 2Q2R3/GM may be specified.

Adopting the reduced equations, we investigate the
effect of an increase of A on the structure of the stellar
models for 180 M with (X, Z) = (0.49, 0.02). As is
well known, the core structure (and hence the lumi-
nosity) remains almost unaltered by uniform rotation,

TABLE 1

NONROTATING STELLAR MoDELs CONSTRUCTED WITH (X, Z) = (0.49, 0.02)
AND QUADRATIC INTERPOLATION IN CARSON’S OPACITY TABLES

M|M, log T, log L/Le log R/Ro log T log p. Be pelip>
120........ 4,682 6.374 1.349 7.655 0.188 0.427 102
160........ 4.695 6.553 1.412 7.663 0.131 0.380 103
170........ 4.698 6.589 1.424 7.665 0.118 0.371 103

4.720 6.589 1.381 7.665 0.118 0.371 76
4.735 6.589 1.352 7.665 0.118 0.371 62
180........ 4,702 6.623 1.434 7.667 0.107 0.362 102
4715 6.623 1.409 7.667 0.107 0.362 85
4.741 6.623 1.355 7.667 0.107 0.362 59
190........ 4705 6.655 1.443 7.668 0.096 0.354 100
4,711 6.655 1.433 7.668 0.096 0.354 93
4.746 6.655 1.362 7.668 0.096 0.354 57
200........ 4,749 6.685 1.370 7.670 0.086 0.346 56
250........ 4,761 6.810 1.409 7.675 0.044 0.316 53
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TABLE 2

NONROTATING STELLAR MODELS BASED ON QUADRATIC INTERPOLATION IN CARSON’S
OPACITY TABLES AND LOCATED AT THE BIFURCATION POINTS

X zZ M{Mo log T, log L/Lo Be pelp>

049..... 0.02 166 6.575 0.376 103
6.575 0.376 66

195 6.670 0.350 97

6.670 0.350 56

0.73...... 0.02 292 6.782 0.350 64
6.782 0.350 55

295 6.788 0.348 64

6.788 0.348 55

071..... 0.04 480 7.062 0.278 91
7.063 0.278 56

585 7.167 0.255 84

7.168 0.255 51

while the envelope expands, thereby reducing the
effective temperature (in the mean sphere approxima-
tion). We find, in figure 4, that the bump on the line of
trial solutions in the (log T, 3 log T,)-plane becomes
depressed below the axis of definitive solutions and its
height decreases (both linearly with increasing A),
although the top of the bump remains centered at
log T, = 4.727 even for critical rotation at the star’s
equator (A = 0.30). The bump leaves the axis of
definitive solutions when A = 0.07. However, the
“cool” model still exists, with its temperature drop-
ping linearly with increasing A until it attains log T, =
4.669 at critical rotation. By comparison with figure 2,
we see that uniform rotation produces the same effect
on the multiplicity of solutions as does a reduction of
the stellar mass. Consequently, although uniform
rotation lifts the mathematical degeneracy found in
§ IVa for a newly developed solution at a bifurcation
point, it does not completely remove the incidence of
degeneracy from the mass spectrum but puts it some-
where else (i.e., at higher masses).

One further effect, not seen for the zero-rotation

+0.06

models, is the development of a second bump on the
(log T,, 8 log T,)-plane above the axis of definitive
solutions. This new bump develops around log T, =
4.635 in figure 4, but its location and small size clearly
indicate that it plays no role in adding further final
models for the adopted chemical composition. Its
interest lies in the possibility, for some other chemical
composition and mass, of the existence of five final
models, if the rotation is fast enough.

V. PHYSICAL INTERPRETATION

Carson’s (1974) new opacities are based on the hot
“Thomas-Fermi” atomic model for all elements
heavier than hydrogen and helium. Unlike the avail-
able ‘‘hydrogenic” opacities, such as those of Cox and
Stewart (1965), they do not slope off smoothly to the
Thomson electron-scattering limit as the density is de-
creased orasthe temperatureisincreased. Rather,alarge
“bump,” due to the last stages of ionization of the CNO
group of elements, shows up in the opacity curves at
very low densities, particularly for temperatures
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F16. 4, —Curves of trial solutions for uniformly rotating models of 180 M, in a plot of specified effective temperature against
the “predicted” correction to the specified effective temperature. Dots indicate definitive solutions. The models have been con-
structed with (X, Z) = (0.49, 0.02) and quadratic interpolation in Carson’s opacity tables. The curves are labeled with the rotation

parameter A.
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FiG. 5.—The run of opacity with radius fraction for nonrotating stellar models of 180 M, with (X, Z) = (0.49, 0.02) and three
different opacity representations. The mode of interpolation in the opacity tables is indicated for Carson’s opacities.

between log T = 5.5 and 6.2, although much sub-
structure in the opacity curves is also evident.
Carson’s opacity tables extend to a sufficiently low
density that the initial rise of the bump is well covered;
however, the second derivative in the curvature of the
bump is not determined. Therefore, quadratic extra-
polation of his tables to very low densities produces a
much larger opacity than does linear extrapolation, in
the neighborhood of the bump. In this way, other,
smaller irregularities also tend to become exaggerated
(for example, the bump due to helium ionization at a
lower temperature). In general, we have found it
necessary to extrapolate Carson’s tables for tempera-
tures below log T = 5.8 in stars more massive than
~30 Mg, where the densities are very low. From the
heuristic point of view of the present paper, it makes no
difference whether the large opacities (however they
are obtained) are correct or not. Nevertheless, com-
putation of a few additional opacity points in order to

extend Carson’s tables gives values which are ap-
proximated better by linear than by quadratic extra-
polation from the original tables.

In figure 5, the run of opacity with radius fraction is
shown for three stellar models with mass 180 M, and
(X, Z) = (0.49, 0.02). The large bump due to CNO
ionjzation and the smaller bump (near the surface) due
to helium ionization are exaggerated when quadratic
extrapolation is used in Carson’s opacity tables. But
wherever interpolation in the tables is used, linear
interpolation is found to give the larger opacity.
Insofar as multiplicity of the stellar models is con-
cerned, the size of the large bump appears to be the
main contributing factor, since the location of this
bump is about the same in the two models shown,
which are otherwise very similar. Notice that the third
model, constructed with Cox-Stewart opacities, has a
run of opacity that is everywhere very nearly equal
to the Thomson electron-scattering limit.

2 T T

of | i

180

080 085

090 095 1.OO

F16. 6.—The run of opacity with radius fraction for nonrotating stellar models of different masses (given in solar units) con-
structed with (X, Z) = (0.49, 0.02) and quadratic interpolation in Carson’s opacity tables.
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In addition to the size of the large opacity bump,
the radius position of the bump is also important, as
may be seen in figure 6 for stellar models of different
masses constructed with quadratic interpolation in
Carson’s opacity tables. Three features of this figure
deserve to be pointed out. First, the opacity bump
becomes larger with increasing stellar mass. This
produces a large shift in the mass distribution within
the envelope, as we shall show below. Actually, the
average level of opacity is greater at 10 M, than at
much higher masses, but the run of opacity through
the envelope at 10 M, is very nearly uniform (like
Thomson scattering!). Second, the width of the opacity
bump shrinks with increasing stellar mass; on the one
hand, this shrinkage differentiates the bump more
clearly from the background, but, on the other hand,
it limits the influence of the bump if too narrow a
portion of the star is involved. Third, the radius frac-
tion of the maximum of the bump diminishes with
increasing mass up to ~ 60 My, but above ~ 60 M, the
maximum of the bump moves back toward the stellar
surface; the reason is that the bump maximum always
occurs near log 7 = 5.6, which, for very high masses, is
reached sufficiently close to the surface that a tem-
perature difference here is nearly proportional to a
difference in radius fraction. And the models of higher
mass have higher surface temperatures. In this con-
nection, it is worth remarking that, for multiple models
of the same mass, the “hot” model has a denser
envelope than does the “cool” model and therefore the
opacities in the outer layers of the “hot” model are
smaller. The effects of surface temperature and of
envelope density are both demonstrated very clearly
in figure 6 for the two models of 180 M.

We conclude that an opacity which increases rapidly
with increasing stellar radius fraction, in such a way
that it becomes appreciable at moderate depths below

VIOLATION OF VOGT-RUSSELL THEOREM 705

the surface, is potentially very effective in influencing
the structure of a diffuse envelope. Presumably, a
modified form of Kramers opacity could be equally as
effective as Carson’s opacities. It should be emphasized
that the effect of the opacity’s actual magnitude is only
indirect, because, at high masses, the zone with the
large opacity is convective (treated here as adiabatic).
This zone, in the “cool” models of highest mass, ex-
tends down from the atmosphere to a depth of #/R ~
0.65.

Recourse is now made to the (U, ¥V)-plane in order
to study the direct effect of the opacity on the envelope
structure. First, we consider the case of 180 M with
the four adopted opacity representations (fig. 7). The
minor increase of the Cox-Stewart opacities over the
constant Thomson electron-scattering opacity, especi-
ally near the stellar surface, increases slightly the
central condensation of the envelope, as the reduction
in U indicates. Adoption of Carson’s large opacities,
however, increases the central condensation very
markedly, to the point where the envelope and core
become quite distinct from each other. The stellar
structure thus resembles a giant configuration, whose
(U, V)-curve is quite similar to the present one (e.g.,
Schwarzschild 1958). In the present case, the “base”
of the envelope occurs at M(r)/M = 0.999 and ¥/R =
0.65, where V has a local minimum, while the convec-
tive core boundary occurs at M(r)/M = 0.926 and
r/R = 0.39. Examination of the (U, ¥V)-curves gives
no obvious indication why multiple solutions should
occur when quadratic interpolation in Carson’s
opacity tables is used and not when linear interpola-
tion is used. However, figure 5 confirms that very local
conditions, affecting only the outermost layers of the
star, are sufficient to produce multiplicity.

In figure 8, (U, V)-curves are shown for stellar
models of different masses constructed with quadratic

] |

{ i

-3 -2

=l O

log U

F1c. 7.—(U, V) plane for nonrotating stellar models of 180 M, with (X, Z) = (0.49, 0.02) and four different opacity representa-
tions. The mode of interpolation in the opacity tables is indicated for Carson’s opacities. The dot denotes the convective core

boundary.
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FiG. 8.—(U, V) plane for nonrotating stellar models of different masses (given in solar units) constructed with (X, Z) = (0.49, 0.02)

and quadratic interpolation in Carson’s opacity tables.

interpolation in Carson’s opacity tables. The smallest
local minimum of ¥V reflects the highest central con-
densation of the stellar envelope, and is found to occur
precisely in the mass range where multiple solutions
exist. This result accords with our intuitive expectation
that multiplicity is more likely to occur in more highly
differentiated structures. However, unlike the cases
already discovered in which a chemical inhomogeneity
(i.e., a change in mean molecular weight) produces
most of the differentiation in structure, the present
instance of multiplicity arises solely from the very
large opacity in the outermost layers. Probably the
fact that the structural differentiation is not as severe
in the present models as in a supergiant is the reason
why the present multiple models lie clustered so close
together in the (log L, log T,)-diagram.

VI. SECULAR STABILITY OF THE MODELS .

Secular (thermal) stability of the models has not
been formally tested. However, it is probable that
divergence of the trial solutions in the (log T, & log T,)-
plane indicates secular instability. The reason for
suspecting this is that & log T, is, in effect, a measure
of the difference between the radiative luminosity
emitted by the surface of the star and the nuclear
luminosity generated by the core (see § II). Provided
that & log T, is sufficiently small in absolute value, it
indicates the correction needed to bring a slightly
perturbed model (which is very close to being in
hydrostatic equilibrium) back into thermal equilibrium.
Jeans (1929) developed a similar diagrammatic ap-
proach to the general problem of secular stability, with
a formal justification provided by a study of the
linearized equations of stellar structure.

On this basis, we suggest that stellar models of
sufficiently high mass constructed with Carson’s
opacities may be secularly unstable, in the sense of
overstability, because the trial solutions above a certain

mass are oscillatory divergent. The only definite case of
oscillatory secular instability discovered so far is that
occurring in the helium-burning shell of an evolved
star of low mass (Hdrm and Schwarzschild 1972). We
suggest further, that stellar models on the “middle-
temperature” sequence, which exists when quadratic
interpolation is used in Carson’s opacity tables, may be
secularly unstable in the ordinary sense, because the
trial solutions for them are always monotonic diver-
gent. Depending on the direction of the initial pertur-
bation, these unstable models would be expected to
move either to the “hot” or to the *“‘cool” sequence,
on a thermal (Helmholtz-Kelvin) time scale. Inter-
estingly, the “middle-temperature” models for non-
degenerate composite configurations (Lauterborn,
Refsdal, and Roth 1971; Paczynski 1972) and for low-
mass partially degenerate configurations (Gabriel and
Noels-Grotsch 1968; Paczynski 1972) may also be
secularly unstable.

Support for the present method of inferring secular
instability (but, possibly, some doubt about the
occurrence of the instability as overstability) is indi-
cated by the following test case. Stars evolving off the
zero-age main sequence are well known to be secularly
stable, and only to become unstable against a slow
overall contraction near the end of core hydrogen
burning. At high mass, the contraction begins when
the central hydrogen abundance drops to about 0.03.
We have here evolved two sequences of static models
for 60 M, to an arbitrarily small value of central
hydrogen abundance. The Cox-Stewart and Carson
opacities were adopted. The trial solutions in both
cases remained monotonic convergent until X, ~ 0.03;
thereupon they became oscillatory divergent.

VII. CONCLUSION

A study has been made of the number and types of
solutions occurring for the equilibrium equations of
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stellar structure, in the case of homogeneous stars of
Population I over the mass range 2-1000 M, with the
following opacity representations: Thomson electron-
scattering opacity, Cox-Stewart “hydrogenic” opaci-
ties, and Carson “Thomas-Fermi” opacities. A variant
of the usual “fitting” method of solving the basic
equations has allowed us to construct a one-parameter
family of trial models for each mass and chemical
composition. The free parameter, log7T,, and its
“correction,” 8logT,, when plotted against each
other, normally form a straight line, whose slope at
8 log T, = 0 (the final model) indicates convergence or
divergence of the solution.

All the models have monotonic convergent solutions
except for the models of very high mass constructed
with Carson’s opacities, whose solutions become
oscillatory convergent and, eventually, oscillatory
divergent with increasing mass. The use of quadratic
interpolation in Carson’s opacity tables produces a
very large opacity at low temperatures, which ulti-
mately causes a bump to develop on the line of trial
solutions in the (log T, o log T,)-plane. This bump indi-
cates the tendency toward a multiplicity of final solu-
tions. It grows with increasing mass and produces two
additional final models when it crosses the axis
dlog T, = 0. However, in a diagram of mass (or
luminosity) against effective temperature, all the final
models describe a single continuous curve, just as Rus-
sell (1927) had originally conjectured when thinking
about possible exceptions to his theorem. Three
sequences of models are represented by segments of
this curve, viz., a “cool” sequence at low to inter-
mediate masses, a ‘“middle” sequence at intermediate
masses, and a “hot” sequence at intermediate to high
masses. In the language of Poincaré a linear series of
models exists, having three branches and two bifurca-
tion points, which also happen here to be turning
points.

Triple models in the present work occur only over a
very small range of masses, well above 100 M, for a
typical Population I chemical composition, and always
near log 7, = 4.71 + 0.01 for the “cool” models and
logT, = 4.74 + 0.01 and pp> =60 £ 5 for the
“hot” models. The whole mass range is shifted upward
for a lighter mean molecular weight or for a faster
uniform rotation. However, a lighter mean molecular
weight (i.e., a higher hydrogen abundance) or a smaller
opacity (i.e., a lower metals abundance) disfavors the
occurrence of multiplicity. Models on the “middle”
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sequence of stars are probably secularly unstable;
models of very high mass on the “hot” sequence are
probably also secularly unstable (possibly in the sense
of overstability).

The multiplicity of solutions found here for homo-
geneous stars bears a strong resemblance to that dis-
covered earlier for composite stars (Stothers and Chin
1968; see also Paczynski 1970, 1972; Lauterborn et al.
1971; Lauterborn 1973). First of all, the range of
multiplicity of the solutions increases with stellar mass,
although triple solutions are the most commonly
found. Second, the core structures of a multiplet are
virtually identical, while only the envelope structures
differ. Third, the state of the gas is nondegenerate
throughout the models. Fourth, a nonconstant opacity
source (with high values of opacity in the outermost
layers) and a large central condensation of the envelope
are the apparent causes of the multiplicity. Fifth, a
single characteristic curve is described by the models
on a diagram of effective temperature against total
mass (for homogeneous models) or core mass (for
composite models). Sixth, the range of total stellar
masses or of core masses over which multiple models
exist is very limited. Seventh, the effective temperatures
of the multiple models on the ‘“hot” and “cool”
sequences are nearly invariant quantities. Eighth, the
“middle-temperature” models are probably secularly
unstable.

It is possible to group the known exceptions to the
Vogt-Russell theorem into three categories of stars:
(1) partially to completely degenerate stars of inter-
mediate to low mass, for which three or more models
exist with different core and envelope structures; (2)
nondegenerate to partially degenerate stars of inter-
mediate mass, for which two models exist with different
isothermal-core structures but similar envelope struc-
tures; and (3) nondegenerate stars of high mass, for
which three or more models exist with nearly identical
core structures but different envelope structures. There
is some overlap of these three categories. Perhaps the
most remarkable result is that a complex chemical
structure is not necessary to produce multiple solutions
for a nondegenerate star. A variable opacity, alone,
can do this.

Dr. T. Richard Carson very kindly permitted me to
use his tables of opacities in advance of their publica-
tion.
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